The spatial properties of opponent-motion normalization
نویسندگان
چکیده
The final stage of the Adelson-Bergen model [J. Opt. Soc. Am. A 2 (1985) 284] computes net motion as the difference between directionally opposite energies E(L) and E(R). However, Georgeson and Scott-Samuel [Vis. Res. 39 (1999) 4393] found that human direction discrimination is better described by motion contrast (C(m))--a metric where opponent energy (E(L)-E(R)) is divided by flicker energy (E(L)+E(R)). In the present paper, we used a lateral masking paradigm to investigate the spatial properties of flicker energy involved in the normalization of opponent energy. Observers discriminated between left and right motion while viewing a checkerboard in which half of the checks contained a drifting sinusoid and the other half contained flicker (i.e. a counterphasing sinusoid). The relative luminance contrasts of flicker and motion checks determined the checkerboard's overall motion contrast C(m). We obtained selectivity functions for opponent-motion normalization by measuring C(m) thresholds whilst varying the orientation, spatial frequency, or size of flicker checks. In all conditions, performance (percent correct) decayed lawfully as we decreased motion contrast, validating the C(m) metric for our stimuli. Thresholds decreased with check size and also improved as we increased either the orientation or spatial-frequency difference between motion and flicker checks. Our data are inconsistent with Heeger-type normalization models [Vis. Neurosci. 9 (1992) 181] in which excitatory inputs are normalized by a non-selective pooling of inhibitory inputs, but data are consistent with the implicit assumption in Georgeson and Scott-Samuel's model that flicker normalization is localized in orientation, scale, and space. However, our lateral masking paradigm leaves open the possibility that the spatial properties of flicker normalization would be different if opponent and flicker energies spatially overlapped. Further characterization of motion contrast will require models of the spatial, temporal, and joint space-time properties of mechanisms mediating opponent-motion and flicker normalization.
منابع مشابه
Opponent-motion mechanisms are self-normalizing
In the ultimate stage of the Adelson-Bergen motion energy model [Adelson, E. H., & Bergen, J. (1985). Spatiotemporal energy models for the perception of motion. Journal of the Optical Society of America, 2, 284-299], motion is derived from the difference between directionally opponent energies E(L) and E(R). However, Georgeson and Scott-Samuel [Georgeson, M. A., & Scott-Samuel, N. E. (1999). Mo...
متن کاملMotion contrast: a new metric for direction discrimination
The Adelson-Bergen energy model (Adelson, E. H., & Bergen, J. R. (1985). Spatiotemporal energy models for the perception of motion. Journal of the Optical Society of America A, 2, 284-299) is a standard framework for understanding first-order motion processing. The opponent energy for a given input is calculated by subtracting one directional energy measure (EL) from its opposite (ER), and its ...
متن کاملSpatial summation properties of the human ocular following response (OFR): Evidence for nonlinearities due to local and global inhibitory interactions
Ocular following responses (OFRs) are the initial tracking eye movements that can be elicited at ultra-short latency by sudden motion of a textured pattern. A recent study used motion stimuli consisting of two large coextensive sine-wave gratings with the same orientation but different spatial frequency and moving in (1/4)-wavelength steps in the same or opposite directions: when the two gratin...
متن کاملIs there opponent-orientation coding in the second-order channels of pattern vision?
Is there opponency between orientation-selective processes in pattern perception, analogous to opponency between color mechanisms? Here we concentrate on possible opponency in second-order channels. We compare several possible second-order structures: SIGN-opponent-only channels in which there is no opponency between orientations (also called complex channels or filter-rectify-filter mechanisms...
متن کاملForm overshadows ‘opponent motion’ information in processing of biological motion from point light walker stimuli
The point light walker (PLW) has been taken to demonstrate the existence of mechanisms specialised in the processing of biological motion, but the roles of form and motion information in such processing remain unclear. While processing is robust to distortion and exclusion of the local motion signals of the individual elements of the PLW, the motion relationships between the elements - referred...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Vision Research
دوره 42 شماره
صفحات -
تاریخ انتشار 2002